
Enzyme Combo

Amount: Klentaq1: 20 ul (0.05 ul/ 25 ul rxn)

OmniTaq: 25 ul (0.05- 0.5ul/ 25 ul rxn) OmniTaq 2: 25 ul (0.05- 0.5ul/ 25 ul rxn) OmniTaq 3: 25 ul (0.05- 0.5ul/ 25 ul rxn) Omni Klentaq: 25 ul (0.05- 0.5ul/ 25 ul rxn) Omni Klentaq 2: 25 ul (0.05- 0.5ul/ 25 ul rxn) Cesium Klentaq AC: 20 ul (0.05 ul/ 25 ul rxn)

CesiumTaq: 20 ul (0.05 ul/ 25 ul rxn)

10x Klentaq Mutant Reaction Buffer (1.5 ml) for use with Omni Klentaq, and Omni Klentaq 2, and Cesium Klentaq AC

Cat #: 500

10x Taq Mutant Reaction Buffer (1.5 ml) for use with OmniTaq, OmniTaq 2, OmniTaq 3, and CesiumTaq

Shipping conditions: Ambient temperature

Storage conditions: -20°C F

Thermostability: Retains at least 85% activity after 1 hour at 95°C

Shelf life: At least 1 year from date of receipt under proper storage conditions.

PRODUCT DESCRIPTION:

Our Enzyme Combo allows you to test 8 of our enzymes to see which one works best for your application.

10x Klentaq1 Reaction Buffer is provided for Klentaq1. Buffer composition is: 500 mM Tris, 160 mM ammonium sulfate, 0.5% Brij 58, and 35 mM magnesium chloride. Final pH is 9.2.

10x Klentaq Mutant Reaction Buffer is provided for Omni Klentaq, and Omni Klentaq 2, and Cesium Klentaq AC. Buffer composition is: 500 mM Tris, 160 mM ammonium sulfate, 0.25% Brij 58, and 35 mM magnesium chloride. Final pH is 9.2.

10x Taq Mutant Reaction Buffer is provided for OmniTaq, OmniTaq 2, OmniTaq 3, and CesiumTaq. Buffer composition is: 500 mM Tris-Cl, 160 mM ammonium sulfate, 0.25% Brij 58, and 25 mM magnesium chloride. Final pH is 9.1.

We also offer (upon request) 10x reaction buffers at pH 7.9 for better fidelity.

TYPICAL PCR PROTOCOL for a 25 ul reaction:

Reagent	Volume	Final Concentration
10x appropriate buffer (see above)	2.5 μl	1x
dNTP mix (10 mM each)	0.5 μl	200 μM each
Left Primer	variable	200 nM
Right Primer	variable	200 nM
DNA template†	variable	0.1-100 ng
PCR Enhancer Cocktail (recommended)*	12.5 μl	1x
DNA Polymerase	0.05 – 0.25 μl **	
De-ionized distilled H2O	Adjust final volume to 25 ul	

[†] DNA amount depends mostly on genome size and target gene copy number.

^{*} Our PCR Enhancer Cocktails (sold separately) confer additional inhibition resistance when using whole blood, serum, plasma, soil, and some inhibitory foods.

^{**} To determine specific optimal enzyme concentration, we strongly recommend an enzyme titration test for each target. Optimal concentrations start at 0.05 ul / 25 ul rxn when using purified DNA template. Our Omni enzymes require more enzyme (up to 0.5 µl / 25 ul rxn) for use with crude samples containing 5% or more whole blood, plasma or serum, or crude soil extracts, or food matrices. For all our enzymes, targets larger than 1 kb require more enzyme and will benefit from a Long Accurate (LA) version of the enzyme.

CYCLING CONDITIONS:

1. Denaturing: 94° for 2-8 minutes for 1 cycle

2. Denaturing: 94° for 40-60 seconds

3. Annealing: 50°-68° depending on the specific Tm primers for 40-60 seconds

4. Extension: 68° for 2 min/kb target

5. Repeat steps 2-4 for 25-40 cycles

Please visit us on the web at www.klentaq.com for troubleshooting and detailed protocols.

REFERENCES:

Kermekchiev, M.B., et al. (2003) Cold-sensitive mutants of Taq DNA polymerase provide a hot start for PCR. Nucl Acids Res. 31, 6139-6147.

Kermekchiev, M.B. et al. (2009) Mutants of Taq DNA polymerase resistant to PCR inhibitors allow DNA amplification from whole blood and crude soil samples. Nucl. Acids Res., 37 (5):e40 E pub.